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Data Never Sleep
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The Burden of Unboundedness
…requires a paradigm shift



The Burden of

Unboundedness

● A program expressed over an infinite 
input may not terminate

● Unless we can reformulate the notion 
of “termination”

● From an infinite input we may observe 
an infinite output

● We still need a way to determine what 
part of the input maps to the output

6
Babcock, Brian, et al. "Models and issues in data stream systems." Proceedings of the twenty-first ACM SIGMOD 2002.

Infinite Processing

Continuous Processing

Ordered Processing

Time



The Burden of

Unboundedness

● An infinite dataset poses the 
problem of where to start computing

● Recency* is a form of temporality 
that enables also reactivity 

● Temporality** may assume other 
forms

○ About Time (Temporal Data)

○ Through Time (Versioned Data)

○ In-Time (Streaming Data)

7
** Polleres, Axel, et al. "How does knowledge evolve in open knowledge graphs?." Transactions on Graph Data and Knowledge 1.1 (2023): 11-1.

*Akidau, Tyler, et al. "The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing." PVLDB (2015).

Ordered Processing

Time



Data
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What is a Stream?
An unbounded partially ordered sequence of data points
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time

What is an Event?

● Event: time-based notification of a known fact defined by
● p a key-value payload
● 𝜏, a type
● t, a timestamp
● d, an optional duration
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● payload: 520 - 565 mm
● type: green
● timestamp: t
● duration: 0



Continuous Queries on append only databases
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Continuous Queries
on append only databases
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time

Z

Answer at time t+3

Answer at time t+2

Answer at time 
t+1

Answer at time 
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.



Continuous Queries (Monotonic)
on append only databases
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time

Answer at time t+3

Answer at time t+2

Answer at time 
t+1

Answer at time 
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.



Monotonicity is 
not enough!
Can we achieve more?

14



Continuous Aggregation

      
How many red colored boxes are in 
the last minute?

time

1 minute wide window
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Top-K

      
What are the top-2 most popular 
colors?

time

ALL Stream



Skyline Continuous Queries

      
Given the most popular colors in the 
last minute, what is dominant shade?

time

1 minute wide window



Complex Event Recognition

yes,      followed by  .     

Is there a primary cool colour followed 
by a secondary warm one in the last 
minute?

time

1 minute wide window



Graph Stream Processing

         Yes, 

Are there any triangles with warm 
colours are in the last minute?

1 minute wide window

time



Historical Notes

20

BIG SPDSMS SDB

2014 2018 2022 20242002 2004 2008 2012

StreamInsight
EsperTech
IBM System S

Apex,Samza,Naiad
Materialise
RisingWave
KSQLDB

We Are Here

Storm
Flink,
Spark Streaming

Quine
Seraph
InvaliDB,PipelineDB

… 20201992

Terry et al.

CQL

Kramer, Yan-Nei,



Data Stream 
Management 

Systems
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CQ@DBMS
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CQ@DBMS
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Continuous Queries
on append only databases
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time

Z

Answer at time t+3

Answer at time t+2

Answer at time 
t+1

Answer at time 
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.



CQ@DBMS
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Continuous Queries (Monotonic)
on append only databases
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time

Answer at time t+3

Answer at time t+2

Answer at time 
t+1

Answer at time 
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.



CQ@DBMS
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Monotonicity Explained

● Monotonic queries produce an append-only output stream and therefore do not 
incur deletions from their answer set. 

○ A query is monotonic if for two instances of the database S1 and S2 such that S1⊆ S2 then Q(S1) ⊆ 
Q(S2), where Q(Si) denotes the set of tuples that satisfy Q when applied to the instance Si.

● Only stateless operators over infinite streams (projection, selection, time-wise 
union, and distributive aggregates) can give rise to monotonic queries.

● Hence, non monotonicity is caused by so called blocking operators, i.e., operators 
that need to see the whole stream to report

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.
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Non-monotonicity
Causes of

The concept has taken many names

- stateless/stateful functions

- blocking/non blocking operators

- event-level/stream-level 
semantics

All notions share the intuition of 
“memory”, how far do I have to 
know to answer?



Interval Strategy

● If there are no deletions in the database, the answer to a continuous, 
non-monotonic query Q can be approximated as Q = P – N

● P(k𝜏) - P((k - 1)𝜏) at every interval [(k-1)𝜏, k𝜏) 

● In the worst case, this approximation gives a superset of set of data items in 
the right hand side of the equation below

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.
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Fixed-Structure Rewriting

● A rewriting Q = P - N is fixed structure if the following conditions are true:

● P is monotonic

● Interval strategy holds while
○ P holding within k1 and Inf, N holding within k2,k3, with k1 < k2

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.



Admitting Deletions (append-only dbs)

● A query Q is deletion sensitive iff for S1 and S2 such that S2 ⊆ Si, then there 
exists an item D1 ∈ S1, D1 ∈ S2 such that one of the following is true:  

● D1 ∈ Q(S1)(t) AND D1 ∉ Q(S2)(t) 
● D1 ∉ Q(Si)(t) AND D1 ∈ Q(S2)(t)

The semantics evolves as

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems (1999)



Fix the 
Size of 

the 
Answer



Fixing the Size of the Answer

34
Babcock, Brian, et al. "Models and issues in data stream systems." Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART 
symposium on Principles of database systems. 2002.

Idea: summarize the characteristics of a stream reducing the memory footprint

A histograms summarize a dataset by grouping the data values into buckets and 
compute for each bucket a set of summary statistics

Wavelet transform the data to represent the most significant features in a 
frequency domain

Sketches, data structures or algorithms that provide approximate answers to 
given queries.



Synopsis-Based DSMS



Modify the 
Input Stream



CQ+Pubctuations@DBMS
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Punctuations

● A punctuation is a predicate on stream elements that must evaluate to false 
for every element following the punctuation (Boolean functions).

● In the original papers, they are presented as a simple grammar 
○ [*,+,value,[ ], range]
○ A tuple matches the punctuation if each of its attributes matches the corresponding pattern

● A punctuated stream is a data stream that contains additional information 
describing a (possibly empty) subset of data over the domain of the stream

38



Punctuations Correctness

● A punctuated stream S is grammatical if for all i, for all j > i, if the 
punctuation p ∈ S[i] � and the tuple t ∈ S[i -> j] , t does not match p.

● Safety: That is, we never emit output unless we can be sure it will not conflict 
with any later input.

● Completeness: we always emit an output if it will necessarily be generated 
by the relational operator under any additional input, including no input.

39



Advantages/Caveats of Punctuations

● Simple to implement

● All result data items for a query will 
eventually be output.

● Cleanses. Every data item that 
resides in the state for any operator 
in the query will eventually be 
removed.

● Who is going to emit the 
punctuation?

○ Sources?
○ Other operators?

● Different data models have 
different punctuation semantics

● We still do not know what 
queries benefits from a given 
punctuation



Modify the 
Output Stream

a.k.a. Modify the 
Query



Window-Based Continuous Querying
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Streams Relations

…
<s,
τ>
…

<s1>
<s2>
<s3>

infinite
unbounde

d
sequence finite

bag

Mapping: T 🡪 R

stream-to-relation

relation-to-stream

relation-to-relation

Stream
Relation R(t)

Relational Algebra (Almost)

*Stream operators

Sliding windows

Arasu, Arvind, Shivnath Babu, and Jennifer Widom. "The CQL continuous query language: semantic foundations and query execution." The VLDB Journal 15 (2006):.

Continuous Query Language

43



W3W2

R2R operator

S

ω

t

width

…

t0

W0 W1 Wn+1Wn…

…

COUNT

2

1

S2R operator (ω)

W3W2 W4

CQL In Brief

44
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Types of Windows

Verwiebe, Juliane, et al. "Survey of window types for aggregation in stream processing systems." The VLDB Journal 32.5 (2023): 985-1011.
45

Window Types Parameters

Sliding width

Hopping Width, slide

Tumbling Width == slides

Session Inactivity 

… …



Windows and Monotonicity

● Weakest non-monotonic queries do not store state and do not reorder 
incoming tuples during processing; tuples are either dropped or appended to 
the output stream immediately. 
○ Projection and selection over a single sliding window are weakest non-monotonic

● Weak non-monotonic have the property that the expiration time of each 
result tuple can be determined without generating negative tuples on the 
output stream. 
○ join, duplicate elimination, and groupby.

● Strict non-monotonic queries have the property that at least some of their 
results expire at unpredictable times. 
○ Negation over two windows is one example.

Golab, Lukasz, and M. Tamer Özsu. "Update-pattern-aware modeling and processing of continuous queries." Proceedings of the 2005 
ACM SIGMOD international conference on Management of data. 2005. 46



Advantages/Caveats of Windows

● SP over sliding Windows are very 
easy to optimise

● Advantages for parallelised 
computations

● Enable efficient aggregation and 
possibly synopsis [paper]

Golab, Lukasz, and M. Tamer Özsu. "Update-pattern-aware modeling and processing of continuous queries." Proceedings of the 2005 
ACM SIGMOD international conference on Management of data. 2005.

47

● Users need to know the data 
semantics

○ Which may be hard given their 
non-monotonic behaviour

● Out-of-order processing requires 
sophisticated strategies

● Currently are system-dependent, 
and harm query portability



Correctness
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In Search of



A Temporal 
Foundation



Data Model

Krämer, Jürgen, and Bernhard Seeger. A temporal foundation for continuous queries over data streams. Univ., 2004. 50

Physical Stream (PS) is infinite sequence of tuples (e, [ts, te)) with the same schema. 
Two elements i, j, are value-equivalent iff ei==ej 

Logical Stream (LS) is a possibly infinite multiset of triples (e, t, n) composed of a record 
e ∈ Ω, a point in time t ∈ T , and a multiplicity n ∈ N.

Physical to Logical (planning): For each tuple (e, [ts, te)) ∈ LS, we split the associated 
time interval into points of time at finest time granularity. 

Logical to Physical (execution)
- Map each logical stream element (e,t,n) into a physical element (e,[t,t+1))
- Coalesce value-equivalent elements that are close to each other (maximal validity) 



Snapshot Reducibility

Krämer, Jürgen, and Bernhard Seeger. A temporal foundation for continuous queries over data streams. Univ., 2004.
51



Snapshot Reducibility

52

For a given logical stream LS and a specified point in time t, the timeslice 
operation returns a non-temporal multiset of all records in LS that are valid at time 
instant t

(Snapshot-Reducibility) A logical stream operator opT is snapshot-reducible to 
its non-temporal counterpart op over multisets, if for any point in time t ∈ T and 
for all logical input streams LS_1, . . . , LS_n n ∈ Sl, 



Operators over logical streams

53

Kramer et al introduce the following operations on logical stream: filter(σ), map (μ), 
Cartesian product (×), duplicate elimination (δ), difference (−), group (γ), 
aggregation (α), union (∪) and window (ω). 

Unfortunately, windows, unions, and are again non-window reducible…

Are we condemned to observe this kinds of results…?



The course of querying streams

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data 
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.

54

Several people tries to overcome the issue of “memory”...

Yan-Nei et al showed us that if we use sequences as our basic data model, 
non-monotonic queries become so dominant that only basic project/select 
operations can be expressed as continuous queries.

The non-blocking subset of relational algebra (NB-RA) and SQL (NB-SQL) are not 
NB-complete i.e., it cannot express every monotonic set function



A New Hope

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data 
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.

55

User defined Aggregates

A query language that supports 
non-blocking UDAs and set union can 
express all monotonic set functions on 
data streams.

While UDAs makes the query language  
NB-complete they also make it turing 
complete on classical tables



Time and Approximation

However, when moving to timestamped data stream (ordered set), we are losing again the 
monotonicity of binary operators (.e.g, join). 

- Can at least have a monotonic approximation?
- Yes, if we consider the recent sub-portion of the data stream: t-operations (union, 

product, difference) only look at the data up to t
- Focusing on streams that have no delay (not true in practice): 

- a query language that has UDA and a version of union that is t-approximated is 
NB-complete.

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data 
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.



Streaming 
Systems

For Big Data
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57
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Continuous Queries

59

SELECT nation, COUNT(*) , 
HOP_START(..) 
HOP_END(...)FROM 
pageviewsGROUP BY 
HOP(rowtime, INTERVAL 1H, 
INTERVAL 1M), nation



SQL-Like Languages

60

● New trend is hiding the 
complexity of the processing 
behind SQL

● Alternative design debates on 
how to extend the languages
○ WINDOW Clauses

○ CEP Operations

○ Extended GroupBy

○ Report Controlling



Functional DSL

61



Operator Topology
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Continuous Queries 
in the 

Modern Data 
Landscape 
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Modern Data 
Landscape
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Modern Landscape

● Real-Time Databases
○ focus on OLAP
○ long time series

● Streaming Databases
○ in-database windowing
○ continuous computation

67



a long standing problem

Incremental View 
Maintenance

● Beyond conjunctive queries, there 
are studies on IVM for intersection 
joins, Datalog, Differential Datalog, 
and DBSP  (best paper VLDB 2023)

● The maintenance of complex 
analytics over evolving databases, 
which includes linear algebra 
computation, collection programming, 
and in-database machine learning.

68Olteanu, Dan. "Recent Increments in Incremental View Maintenance." arXiv preprint arXiv:2404.17679 (2024).



69

Streaming Graphs



In 2021 already

The Future is Big Graphs

● A Community Vision of the role of 
graph in the future years

● Streaming Graph processing is core
○ Complex Query Execution
○ Incremental Graph Analytics
○ Temporal Dynamic Graphs

70



Challenges for Next-generation Graph Processing 
Systems

● Ch1. A lattice of graph data models and graph algebras  
● Ch2. Complex data management ecosystems 
● Ch3. Performance and benchmarking 

71S. Sakr, A. Bonifati, H. Voigt, A. Iosup et al. “The Future is Big Graphs: A Community View on Graph 
Processing Systems” Commun. ACM 64(9): 62-71 (2021) 71



Graphs are ubiquitous across diverse applications

72

covidgraph.org (Graphs4Good Initiative - Neo4j) 

72

● Several killer applications exist, e.g. financial, logistic, scientific, 
fraud detection, cybersecurity, supply chain management etc.  



Ch1. Expressivity of the graphs/queries 

● Dependence on the chosen data model
● How do humans conceptualize graphs? 
● The interoperability issues (due to multiple heterogeneous data sources) are 

to be taken into account
● A data model lattice to navigate across data models, balancing 

understandability and expressive power
● A new algebra for the variety of graph workloads

73A. Bonifati, G. Fletcher, H. Voigt, N. Yakovets  “Querying Graphs” Synthesis Lectures on Data Management. 
Springer 2018 73



Ch2. A complex data management ecosystem

74



Ch3. Performance and benchmarking 

● The need for new, reproducible experimental methodologies to facilitate 
quick yet meaningful performance-testing? 

● How to define more faithful metrics for executing a graph algorithm, query, 
program, or workflow? 

● How to generate workloads with combined operations, covering temporal, 
spatial, and streaming aspects? 

● How to benchmark pipelines including machine learning and simulation? 

7
5
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RSP-QL

Dell’Aglio et al

●  Input data: RDF Triples (s,p,o)
●  Semantics is based on denotation

○  extends SPARQL with window 
functions (outside algebraic 
structure)

○   derived from CQL
●  output: time-annotated binding

○  or graphs

76



Streaming Graphs 
Towards Stream Graph Processing Systems 

77

● Dynamic graphs are graphs that can accommodate updates (insertions, 
deletions, changes) and allow querying on the new/old state

● Streaming graphs are graphs that are unbound as new data arrives at 
high-speed. 

● Current systems and libraries (Gelly/Apache Flink) focus on 
aggregates/projections

● However, more complex query processing operators taking into account 
recursion, path-oriented semantics etc. need to be investigated 

● Graph processing systems are also inherently dynamic and need to respond 
to all these challenges 



Streaming Graphs
Building the underlying graph one edge at a time

78



Streaming graph models

● Window-based semantics (use 
window to batch edges)

● Continuous semantics (edges are 
batched as they come)

● Complex vs. Simple operations 

79



Streaming Regular Path Queries (RPQs)
Reflecting the different semantics of graph queries 

80Anil Pacaci et al.: Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020: 1415-1430



Towards a Streaming Graph Query Processor

81



Streaming Graph Algebra
A common foundation for streaming graph query engines 

82A. Pacaci, A. Bonifati, T. Ozsu. Evaluating Complex Queries on Streaming Graphs. In IEEE ICDE 2022



Streaming graphs in 
graph query languages 

● Input stream of edges (tuples)
● Snapshot graph is the query focus
● Query models is based on 

non-recursive Datalog + Kleene Star
● Semantics derived from snapshot 

reducibility (over graphs)
● Output: a graph (path) detected (as 

in standard query languages, such as 
GQL and SQL/PGQ)

83



How can we continuously process large 
graph streams as soon as they are 

discovered?

Research Question

Can we design a declarative language that 
enables continuous graph querying?

Research Goal
84



Running Riding Example
Detecting Free Riders in Smart Biking
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Running Riding Example
Detecting Free Riders in Smart Biking
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Running Riding Example
Detecting Free Riders in Smart Biking

87

What users have used the free period for 
subsequent rentals in the last hour?



Running Riding Example
Detecting Free Riders in Smart Biking

88

What users have used the free period for 
subsequent rentals in the last hour?



Running Riding Example
Detecting Free Riders in Smart Biking

89

WITH     datetime() - duration('PT60M') AS win_start, datetime() AS win_end
MATCH (:Bike)-[r:rentedAt]->(s:Station), 
              q = (b)-[:returnedAt|rentedAt*3..]-(o:Station) 
WITH r, s, q, relationships(q) AS rels, 
          [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS hops 
WHERE ALL(e IN rels WHERE win_start <= e.val_time <= win_end 

AND e.user_id = r.user_id AND e.val_time > r.val_time 
AND (e.duration IS NULL OR e.duration < 20) ) 

RETURN r.user_id, s.id, r.val_time, hops

What users have used the free period for 
subsequent rentals in the last hour?



Running Riding Example
Detecting Free Riders in Smart Biking

90



Running Riding Example
Detecting Free Riders in Smart Biking 

91
time



Pros

Using Cypher for Streaming

● Declarative
● Interactive
● Intuitive
● Standard-ISH*

●Temporality is reduced to a 
selection 

○ Verbose
○ Unoptimised

●“Now” = User Time 
○ Not Reactive

●Results Reporting: 
○ Now + Latency

Cons

92



You don’t 
really know 
someone 
your data
until you 
fight  stream 
them

93



● Declarative Semantics. Seraph allows 
systems portability and optimisations, as 
well as adoption. 

● Continuous evaluation. Seraph’s 
operators allow the repeated evaluation 
over time, i.e., choosing a time interval and 
a sequence to evaluate the query. 

● Result emitting. Seraph’s operators allow 
controlling the report of results, i.e., what is 
part of the result and when it will be ready 
to be emitted. 

● Preserving expressiveness. Seraph 
preserves openCypher’s expressiveness 

94Christopher Rost et al. Seraph: Continuous Queries on Property Graph Streams. EDBT 2024: 234-247



Seraph’s Syntax

95

Before After

WITH datetime() - duration('PT60M') AS 
win_start, datetime() AS win_end
MATCH (:Bike)-[r:rentedAt]->(s:Station), q = 
(b)-[:returnedAt|rentedAt*3..]-(o:Station) 
WITH r, s, q, relationships(q) AS rels, [n IN 
nodes(q) WHERE 'Station' IN labels(n) | 
n.id] AS hops 
WHERE ALL(e IN rels WHERE win_start 
<= e.val_time <= win_end 

AND e.user_id = r.user_id 
AND e.val_time > r.val_time 

AND (e.duration IS NULL 
OR e.duration < 20) ) 
RETURN r.user_id, s.id, r.val_time, hops

REGISTER QUERY student_trick 
STARTING AT 2022-10-14T14:45 {

MATCH (:Bike)-[r:rentedAt]->(s:Station),
q = (b)-[:returnedAt|rentedAt*3..]-  (o:Station)
WITHIN PT1H
WITH r, s, q, relationships(q) AS rels,
[n IN nodes(q) WHERE 'Station' IN labels(n) | 

n.id] AS hops
WHERE ALL(e IN rels WHERE e.user_id = 

r.user_id AND e.
val_time > r.val_time AND e.duration < 20)
EMIT r.user_id, s.id, r.val_time, hops
ON ENTERING EVERY PT5M 
}



Before

Seraph’s Data Model

● Property Graphs

● Tables

96

After

● Property Graph Stream

○ unbounded ordered sequence of 
pairs (G,𝜔) where G is a PG and 
𝜔 a timestamp

● Snapshot Graph

○ Union of all the PGs within a finite 
sub-portion of a PGStream

● Time-annotated Tables

○ Extend Tables with temporal 
Bound

● Time-varying Table (Ψ:Ω→T) 

○ a functional extension of the 
relational model to incorporate the 
time semantics



Seraph’s Data Model

● Time-varying Table (Ψ:Ω→T) 
○ Consistency, i.e., Ψ always 

identifies a time-annotated table
○ Chronologicality, i.e., Ψ always 

identifies the time-annotated table 
with the earliest (minimal) opening 
timestamp.

○ Monotonicity, i.e., Ψ always 
identifies subsequent 
time-annotated tables for 
subsequent time instants.

97



Seraph’s Semantics

98



Graph Streaming 
is in its infancy

99

● Need of considering standard 
graph query languages

● Need of adapting graph query 
semantics (trail, shortest path 
etc.)

● Need to make it efficient
● Related problems: 

quality-aware streaming, 
fairness-aware streaming



You don’t 
really know 
someone 
your graph
until you 
fight  stream 
them
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Linguistic Maturity

● what are the the fundamental 
abstractions to enable continuous 
queries ?

● In the first “Stream Processing Era”, 
several foundational languages have 
been presented

○ Terry et al, CQL, Kramer et al. but 
the list continues.

● Are the language design principles 
shared?

102



Query Portability

what are the the fundamental 
abstractions to enable continuous 
queries ?

Surprisingly(?), it is not that easy 
to port continuous queries from a 
system to another 

Intermediate representation like 
River, DBSP, Brooklet, Arc, go in 
such direction

103



Data Complexity

●  Users are demanding more and 
more sophisticated view over data 

●  In the while data may seems simple, 
but information needs push for 
challenging this assumption

● How far can we push such 
challenge? to what data models SP 
generalise?

●  Can we extend into unstructured 
multimodality?

104



Observations
Linguistic Maturity

105

● Users are demanding more 
and more complex view over 
data 

● How far can we push such 
challenge? to what data 
models SP generalise?

● How far can we push such 
challenge? to what data 
models SP generalise?

Query Portability Data Complexity

● Streaming System 
internals remain largely 
custom, hindering query 
portability

● Can we dissect the 
modern and established 
approaches to uniform 
them?

● Intermediate 
representation like River, 
DBSP, Brooklet, Arc, go in 
such direction

● “windows” aside, what are 
the the fundamental 
abstractions to enable 
continuous queries ?

● There are evidence of 
industrial adoption and 
standardization seems 
possible

●  Despite the variety of 
language design proposal, 
such languages are still 
“domain-specific”
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