
An Overview of Continuous
Querying in (Modern) Data System

Riccardo Tommasini, INSA Lyon, CNRS Liris (France)
Angela Bonifati, Lyon 1 University, CNRS Liris, IUF (France)

1

Slides at

Data Never Sleep

3
https://web-assets.domo.com/miyagi/images/product/product-feature-22-data-never-sleeps-10.png

Data

4
credits to Sara Robinson, Felipe Hoffa

The Burden of Unboundedness
…requires a paradigm shift

The Burden of

Unboundedness

● A program expressed over an infinite
input may not terminate

● Unless we can reformulate the notion
of “termination”

● From an infinite input we may observe
an infinite output

● We still need a way to determine what
part of the input maps to the output

6
Babcock, Brian, et al. "Models and issues in data stream systems." Proceedings of the twenty-first ACM SIGMOD 2002.

Infinite Processing

Continuous Processing

Ordered Processing

Time

The Burden of

Unboundedness

● An infinite dataset poses the
problem of where to start computing

● Recency* is a form of temporality
that enables also reactivity

● Temporality** may assume other
forms

○ About Time (Temporal Data)

○ Through Time (Versioned Data)

○ In-Time (Streaming Data)

7
** Polleres, Axel, et al. "How does knowledge evolve in open knowledge graphs?." Transactions on Graph Data and Knowledge 1.1 (2023): 11-1.

*Akidau, Tyler, et al. "The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing." PVLDB (2015).

Ordered Processing

Time

Data

8
credits to Sara Robinson, Felipe Hoffa

What is a Stream?
An unbounded partially ordered sequence of data points

9

time

What is an Event?

● Event: time-based notification of a known fact defined by
● p a key-value payload
● 𝜏, a type
● t, a timestamp
● d, an optional duration

10

● payload: 520 - 565 mm
● type: green
● timestamp: t
● duration: 0

Continuous Queries on append only databases

11

Continuous Queries
on append only databases

12

time

Z

Answer at time t+3

Answer at time t+2

Answer at time
t+1

Answer at time
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.

Continuous Queries (Monotonic)
on append only databases

13

time

Answer at time t+3

Answer at time t+2

Answer at time
t+1

Answer at time
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.

Monotonicity is
not enough!
Can we achieve more?

14

Continuous Aggregation

How many red colored boxes are in
the last minute?

time

1 minute wide window

7

Top-K

What are the top-2 most popular
colors?

time

ALL Stream

Skyline Continuous Queries

Given the most popular colors in the
last minute, what is dominant shade?

time

1 minute wide window

Complex Event Recognition

yes, followed by .

Is there a primary cool colour followed
by a secondary warm one in the last
minute?

time

1 minute wide window

Graph Stream Processing

 Yes,

Are there any triangles with warm
colours are in the last minute?

1 minute wide window

time

Historical Notes

20

BIG SPDSMS SDB

2014 2018 2022 20242002 2004 2008 2012

StreamInsight
EsperTech
IBM System S

Apex,Samza,Naiad
Materialise
RisingWave
KSQLDB

We Are Here

Storm
Flink,
Spark Streaming

Quine
Seraph
InvaliDB,PipelineDB

… 20201992

Terry et al.

CQL

Kramer, Yan-Nei,

Data Stream
Management

Systems

21

CQ@DBMS

22

CQ@DBMS

23

Continuous Queries
on append only databases

24

time

Z

Answer at time t+3

Answer at time t+2

Answer at time
t+1

Answer at time
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.

CQ@DBMS

25

Continuous Queries (Monotonic)
on append only databases

26

time

Answer at time t+3

Answer at time t+2

Answer at time
t+1

Answer at time
t…

Terry, Douglas, et al. "Continuous queries over append-only databases." Acm Sigmod Record 21.2 (1992): 321-330.

CQ@DBMS

27

Monotonicity Explained

● Monotonic queries produce an append-only output stream and therefore do not
incur deletions from their answer set.

○ A query is monotonic if for two instances of the database S1 and S2 such that S1⊆ S2 then Q(S1) ⊆
Q(S2), where Q(Si) denotes the set of tuples that satisfy Q when applied to the instance Si.

● Only stateless operators over infinite streams (projection, selection, time-wise
union, and distributive aggregates) can give rise to monotonic queries.

● Hence, non monotonicity is caused by so called blocking operators, i.e., operators
that need to see the whole stream to report

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.

28

Non-monotonicity
Causes of

The concept has taken many names

- stateless/stateful functions

- blocking/non blocking operators

- event-level/stream-level
semantics

All notions share the intuition of
“memory”, how far do I have to
know to answer?

Interval Strategy

● If there are no deletions in the database, the answer to a continuous,
non-monotonic query Q can be approximated as Q = P – N

● P(k𝜏) - P((k - 1)𝜏) at every interval [(k-1)𝜏, k𝜏)

● In the worst case, this approximation gives a superset of set of data items in
the right hand side of the equation below

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.

30

Fixed-Structure Rewriting

● A rewriting Q = P - N is fixed structure if the following conditions are true:

● P is monotonic

● Interval strategy holds while
○ P holding within k1 and Inf, N holding within k2,k3, with k1 < k2

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems 8.04 (1999): 295-323.

Admitting Deletions (append-only dbs)

● A query Q is deletion sensitive iff for S1 and S2 such that S2 ⊆ Si, then there
exists an item D1 ∈ S1, D1 ∈ S2 such that one of the following is true:

● D1 ∈ Q(S1)(t) AND D1 ∉ Q(S2)(t)
● D1 ∉ Q(Si)(t) AND D1 ∈ Q(S2)(t)

The semantics evolves as

Barbará, Daniel. "The characterization of continuous queries." International Journal of Cooperative Information Systems (1999)

Fix the
Size of

the
Answer

Fixing the Size of the Answer

34
Babcock, Brian, et al. "Models and issues in data stream systems." Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 2002.

Idea: summarize the characteristics of a stream reducing the memory footprint

A histograms summarize a dataset by grouping the data values into buckets and
compute for each bucket a set of summary statistics

Wavelet transform the data to represent the most significant features in a
frequency domain

Sketches, data structures or algorithms that provide approximate answers to
given queries.

Synopsis-Based DSMS

Modify the
Input Stream

CQ+Pubctuations@DBMS

37

Punctuations

● A punctuation is a predicate on stream elements that must evaluate to false
for every element following the punctuation (Boolean functions).

● In the original papers, they are presented as a simple grammar
○ [*,+,value,[], range]
○ A tuple matches the punctuation if each of its attributes matches the corresponding pattern

● A punctuated stream is a data stream that contains additional information
describing a (possibly empty) subset of data over the domain of the stream

38

Punctuations Correctness

● A punctuated stream S is grammatical if for all i, for all j > i, if the
punctuation p ∈ S[i] � and the tuple t ∈ S[i -> j] , t does not match p.

● Safety: That is, we never emit output unless we can be sure it will not conflict
with any later input.

● Completeness: we always emit an output if it will necessarily be generated
by the relational operator under any additional input, including no input.

39

Advantages/Caveats of Punctuations

● Simple to implement

● All result data items for a query will
eventually be output.

● Cleanses. Every data item that
resides in the state for any operator
in the query will eventually be
removed.

● Who is going to emit the
punctuation?

○ Sources?
○ Other operators?

● Different data models have
different punctuation semantics

● We still do not know what
queries benefits from a given
punctuation

Modify the
Output Stream

a.k.a. Modify the
Query

Window-Based Continuous Querying

42

Streams Relations

…
<s,
τ>
…

<s1>
<s2>
<s3>

infinite
unbounde

d
sequence finite

bag

Mapping: T 🡪 R

stream-to-relation

relation-to-stream

relation-to-relation

Stream
Relation R(t)

Relational Algebra (Almost)

*Stream operators

Sliding windows

Arasu, Arvind, Shivnath Babu, and Jennifer Widom. "The CQL continuous query language: semantic foundations and query execution." The VLDB Journal 15 (2006):.

Continuous Query Language

43

W3W2

R2R operator

S

ω

t

width

…

t0

W0 W1 Wn+1Wn…

…

COUNT

2

1

S2R operator (ω)

W3W2 W4

CQL In Brief

44

1

1

1

W4

Types of Windows

Verwiebe, Juliane, et al. "Survey of window types for aggregation in stream processing systems." The VLDB Journal 32.5 (2023): 985-1011.
45

Window Types Parameters

Sliding width

Hopping Width, slide

Tumbling Width == slides

Session Inactivity

… …

Windows and Monotonicity

● Weakest non-monotonic queries do not store state and do not reorder
incoming tuples during processing; tuples are either dropped or appended to
the output stream immediately.
○ Projection and selection over a single sliding window are weakest non-monotonic

● Weak non-monotonic have the property that the expiration time of each
result tuple can be determined without generating negative tuples on the
output stream.
○ join, duplicate elimination, and groupby.

● Strict non-monotonic queries have the property that at least some of their
results expire at unpredictable times.
○ Negation over two windows is one example.

Golab, Lukasz, and M. Tamer Özsu. "Update-pattern-aware modeling and processing of continuous queries." Proceedings of the 2005
ACM SIGMOD international conference on Management of data. 2005. 46

Advantages/Caveats of Windows

● SP over sliding Windows are very
easy to optimise

● Advantages for parallelised
computations

● Enable efficient aggregation and
possibly synopsis [paper]

Golab, Lukasz, and M. Tamer Özsu. "Update-pattern-aware modeling and processing of continuous queries." Proceedings of the 2005
ACM SIGMOD international conference on Management of data. 2005.

47

● Users need to know the data
semantics

○ Which may be hard given their
non-monotonic behaviour

● Out-of-order processing requires
sophisticated strategies

● Currently are system-dependent,
and harm query portability

Correctness

48

In Search of

A Temporal
Foundation

Data Model

Krämer, Jürgen, and Bernhard Seeger. A temporal foundation for continuous queries over data streams. Univ., 2004. 50

Physical Stream (PS) is infinite sequence of tuples (e, [ts, te)) with the same schema.
Two elements i, j, are value-equivalent iff ei==ej

Logical Stream (LS) is a possibly infinite multiset of triples (e, t, n) composed of a record
e ∈ Ω, a point in time t ∈ T , and a multiplicity n ∈ N.

Physical to Logical (planning): For each tuple (e, [ts, te)) ∈ LS, we split the associated
time interval into points of time at finest time granularity.

Logical to Physical (execution)
- Map each logical stream element (e,t,n) into a physical element (e,[t,t+1))
- Coalesce value-equivalent elements that are close to each other (maximal validity)

Snapshot Reducibility

Krämer, Jürgen, and Bernhard Seeger. A temporal foundation for continuous queries over data streams. Univ., 2004.
51

Snapshot Reducibility

52

For a given logical stream LS and a specified point in time t, the timeslice
operation returns a non-temporal multiset of all records in LS that are valid at time
instant t

(Snapshot-Reducibility) A logical stream operator opT is snapshot-reducible to
its non-temporal counterpart op over multisets, if for any point in time t ∈ T and
for all logical input streams LS_1, . . . , LS_n n ∈ Sl,

Operators over logical streams

53

Kramer et al introduce the following operations on logical stream: filter(σ), map (μ),
Cartesian product (×), duplicate elimination (δ), difference (−), group (γ),
aggregation (α), union (∪) and window (ω).

Unfortunately, windows, unions, and are again non-window reducible…

Are we condemned to observe this kinds of results…?

The course of querying streams

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.

54

Several people tries to overcome the issue of “memory”...

Yan-Nei et al showed us that if we use sequences as our basic data model,
non-monotonic queries become so dominant that only basic project/select
operations can be expressed as continuous queries.

The non-blocking subset of relational algebra (NB-RA) and SQL (NB-SQL) are not
NB-complete i.e., it cannot express every monotonic set function

A New Hope

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.

55

User defined Aggregates

A query language that supports
non-blocking UDAs and set union can
express all monotonic set functions on
data streams.

While UDAs makes the query language
NB-complete they also make it turing
complete on classical tables

Time and Approximation

However, when moving to timestamped data stream (ordered set), we are losing again the
monotonicity of binary operators (.e.g, join).

- Can at least have a monotonic approximation?
- Yes, if we consider the recent sub-portion of the data stream: t-operations (union,

product, difference) only look at the data up to t
- Focusing on streams that have no delay (not true in practice):

- a query language that has UDA and a version of union that is t-approximated is
NB-complete.

Law, Yan-Nei, Haixun Wang, and Carlo Zaniolo. "Relational languages and data models for continuous queries on sequences and data
streams." ACM Transactions on Database Systems (TODS) 36.2 (2011): 1-32.

Streaming
Systems

For Big Data

57

57

58

Continuous Queries

59

SELECT nation, COUNT(*) ,
HOP_START(..)
HOP_END(...)FROM
pageviewsGROUP BY
HOP(rowtime, INTERVAL 1H,
INTERVAL 1M), nation

SQL-Like Languages

60

● New trend is hiding the
complexity of the processing
behind SQL

● Alternative design debates on
how to extend the languages
○ WINDOW Clauses

○ CEP Operations

○ Extended GroupBy

○ Report Controlling

Functional DSL

61

Operator Topology

62

Continuous Queries
in the

Modern Data
Landscape

63

64

65

Modern Data
Landscape

66

Modern Landscape

● Real-Time Databases
○ focus on OLAP
○ long time series

● Streaming Databases
○ in-database windowing
○ continuous computation

67

a long standing problem

Incremental View
Maintenance

● Beyond conjunctive queries, there
are studies on IVM for intersection
joins, Datalog, Differential Datalog,
and DBSP (best paper VLDB 2023)

● The maintenance of complex
analytics over evolving databases,
which includes linear algebra
computation, collection programming,
and in-database machine learning.

68Olteanu, Dan. "Recent Increments in Incremental View Maintenance." arXiv preprint arXiv:2404.17679 (2024).

69

Streaming Graphs

In 2021 already

The Future is Big Graphs

● A Community Vision of the role of
graph in the future years

● Streaming Graph processing is core
○ Complex Query Execution
○ Incremental Graph Analytics
○ Temporal Dynamic Graphs

70

Challenges for Next-generation Graph Processing
Systems

● Ch1. A lattice of graph data models and graph algebras
● Ch2. Complex data management ecosystems
● Ch3. Performance and benchmarking

71S. Sakr, A. Bonifati, H. Voigt, A. Iosup et al. “The Future is Big Graphs: A Community View on Graph
Processing Systems” Commun. ACM 64(9): 62-71 (2021) 71

Graphs are ubiquitous across diverse applications

72

covidgraph.org (Graphs4Good Initiative - Neo4j)

72

● Several killer applications exist, e.g. financial, logistic, scientific,
fraud detection, cybersecurity, supply chain management etc.

Ch1. Expressivity of the graphs/queries

● Dependence on the chosen data model
● How do humans conceptualize graphs?
● The interoperability issues (due to multiple heterogeneous data sources) are

to be taken into account
● A data model lattice to navigate across data models, balancing

understandability and expressive power
● A new algebra for the variety of graph workloads

73A. Bonifati, G. Fletcher, H. Voigt, N. Yakovets “Querying Graphs” Synthesis Lectures on Data Management.
Springer 2018 73

Ch2. A complex data management ecosystem

74

Ch3. Performance and benchmarking

● The need for new, reproducible experimental methodologies to facilitate
quick yet meaningful performance-testing?

● How to define more faithful metrics for executing a graph algorithm, query,
program, or workflow?

● How to generate workloads with combined operations, covering temporal,
spatial, and streaming aspects?

● How to benchmark pipelines including machine learning and simulation?

7
5

75

RSP-QL

Dell’Aglio et al

● Input data: RDF Triples (s,p,o)
● Semantics is based on denotation

○ extends SPARQL with window
functions (outside algebraic
structure)

○ derived from CQL
● output: time-annotated binding

○ or graphs

76

Streaming Graphs
Towards Stream Graph Processing Systems

77

● Dynamic graphs are graphs that can accommodate updates (insertions,
deletions, changes) and allow querying on the new/old state

● Streaming graphs are graphs that are unbound as new data arrives at
high-speed.

● Current systems and libraries (Gelly/Apache Flink) focus on
aggregates/projections

● However, more complex query processing operators taking into account
recursion, path-oriented semantics etc. need to be investigated

● Graph processing systems are also inherently dynamic and need to respond
to all these challenges

Streaming Graphs
Building the underlying graph one edge at a time

78

Streaming graph models

● Window-based semantics (use
window to batch edges)

● Continuous semantics (edges are
batched as they come)

● Complex vs. Simple operations

79

Streaming Regular Path Queries (RPQs)
Reflecting the different semantics of graph queries

80Anil Pacaci et al.: Regular Path Query Evaluation on Streaming Graphs. SIGMOD Conference 2020: 1415-1430

Towards a Streaming Graph Query Processor

81

Streaming Graph Algebra
A common foundation for streaming graph query engines

82A. Pacaci, A. Bonifati, T. Ozsu. Evaluating Complex Queries on Streaming Graphs. In IEEE ICDE 2022

Streaming graphs in
graph query languages

● Input stream of edges (tuples)
● Snapshot graph is the query focus
● Query models is based on

non-recursive Datalog + Kleene Star
● Semantics derived from snapshot

reducibility (over graphs)
● Output: a graph (path) detected (as

in standard query languages, such as
GQL and SQL/PGQ)

83

How can we continuously process large
graph streams as soon as they are

discovered?

Research Question

Can we design a declarative language that
enables continuous graph querying?

Research Goal
84

Running Riding Example
Detecting Free Riders in Smart Biking

85

Running Riding Example
Detecting Free Riders in Smart Biking

86

Running Riding Example
Detecting Free Riders in Smart Biking

87

What users have used the free period for
subsequent rentals in the last hour?

Running Riding Example
Detecting Free Riders in Smart Biking

88

What users have used the free period for
subsequent rentals in the last hour?

Running Riding Example
Detecting Free Riders in Smart Biking

89

WITH datetime() - duration('PT60M') AS win_start, datetime() AS win_end
MATCH (:Bike)-[r:rentedAt]->(s:Station),
 q = (b)-[:returnedAt|rentedAt*3..]-(o:Station)
WITH r, s, q, relationships(q) AS rels,
 [n IN nodes(q) WHERE 'Station' IN labels(n) | n.id] AS hops
WHERE ALL(e IN rels WHERE win_start <= e.val_time <= win_end

AND e.user_id = r.user_id AND e.val_time > r.val_time
AND (e.duration IS NULL OR e.duration < 20))

RETURN r.user_id, s.id, r.val_time, hops

What users have used the free period for
subsequent rentals in the last hour?

Running Riding Example
Detecting Free Riders in Smart Biking

90

Running Riding Example
Detecting Free Riders in Smart Biking

91
time

Pros

Using Cypher for Streaming

● Declarative
● Interactive
● Intuitive
● Standard-ISH*

●Temporality is reduced to a
selection

○ Verbose
○ Unoptimised

●“Now” = User Time
○ Not Reactive

●Results Reporting:
○ Now + Latency

Cons

92

You don’t
really know
someone
your data
until you
fight stream
them

93

● Declarative Semantics. Seraph allows
systems portability and optimisations, as
well as adoption.

● Continuous evaluation. Seraph’s
operators allow the repeated evaluation
over time, i.e., choosing a time interval and
a sequence to evaluate the query.

● Result emitting. Seraph’s operators allow
controlling the report of results, i.e., what is
part of the result and when it will be ready
to be emitted.

● Preserving expressiveness. Seraph
preserves openCypher’s expressiveness

94Christopher Rost et al. Seraph: Continuous Queries on Property Graph Streams. EDBT 2024: 234-247

Seraph’s Syntax

95

Before After

WITH datetime() - duration('PT60M') AS
win_start, datetime() AS win_end
MATCH (:Bike)-[r:rentedAt]->(s:Station), q =
(b)-[:returnedAt|rentedAt*3..]-(o:Station)
WITH r, s, q, relationships(q) AS rels, [n IN
nodes(q) WHERE 'Station' IN labels(n) |
n.id] AS hops
WHERE ALL(e IN rels WHERE win_start
<= e.val_time <= win_end

AND e.user_id = r.user_id
AND e.val_time > r.val_time

AND (e.duration IS NULL
OR e.duration < 20))
RETURN r.user_id, s.id, r.val_time, hops

REGISTER QUERY student_trick
STARTING AT 2022-10-14T14:45 {

MATCH (:Bike)-[r:rentedAt]->(s:Station),
q = (b)-[:returnedAt|rentedAt*3..]- (o:Station)
WITHIN PT1H
WITH r, s, q, relationships(q) AS rels,
[n IN nodes(q) WHERE 'Station' IN labels(n) |

n.id] AS hops
WHERE ALL(e IN rels WHERE e.user_id =

r.user_id AND e.
val_time > r.val_time AND e.duration < 20)
EMIT r.user_id, s.id, r.val_time, hops
ON ENTERING EVERY PT5M
}

Before

Seraph’s Data Model

● Property Graphs

● Tables

96

After

● Property Graph Stream

○ unbounded ordered sequence of
pairs (G,𝜔) where G is a PG and
𝜔 a timestamp

● Snapshot Graph

○ Union of all the PGs within a finite
sub-portion of a PGStream

● Time-annotated Tables

○ Extend Tables with temporal
Bound

● Time-varying Table (Ψ:Ω→T)

○ a functional extension of the
relational model to incorporate the
time semantics

Seraph’s Data Model

● Time-varying Table (Ψ:Ω→T)
○ Consistency, i.e., Ψ always

identifies a time-annotated table
○ Chronologicality, i.e., Ψ always

identifies the time-annotated table
with the earliest (minimal) opening
timestamp.

○ Monotonicity, i.e., Ψ always
identifies subsequent
time-annotated tables for
subsequent time instants.

97

Seraph’s Semantics

98

Graph Streaming
is in its infancy

99

● Need of considering standard
graph query languages

● Need of adapting graph query
semantics (trail, shortest path
etc.)

● Need to make it efficient
● Related problems:

quality-aware streaming,
fairness-aware streaming

You don’t
really know
someone
your graph
until you
fight stream
them

100

101

Linguistic Maturity

● what are the the fundamental
abstractions to enable continuous
queries ?

● In the first “Stream Processing Era”,
several foundational languages have
been presented

○ Terry et al, CQL, Kramer et al. but
the list continues.

● Are the language design principles
shared?

102

Query Portability

what are the the fundamental
abstractions to enable continuous
queries ?

Surprisingly(?), it is not that easy
to port continuous queries from a
system to another

Intermediate representation like
River, DBSP, Brooklet, Arc, go in
such direction

103

Data Complexity

● Users are demanding more and
more sophisticated view over data

● In the while data may seems simple,
but information needs push for
challenging this assumption

● How far can we push such
challenge? to what data models SP
generalise?

● Can we extend into unstructured
multimodality?

104

Observations
Linguistic Maturity

105

● Users are demanding more
and more complex view over
data

● How far can we push such
challenge? to what data
models SP generalise?

● How far can we push such
challenge? to what data
models SP generalise?

Query Portability Data Complexity

● Streaming System
internals remain largely
custom, hindering query
portability

● Can we dissect the
modern and established
approaches to uniform
them?

● Intermediate
representation like River,
DBSP, Brooklet, Arc, go in
such direction

● “windows” aside, what are
the the fundamental
abstractions to enable
continuous queries ?

● There are evidence of
industrial adoption and
standardization seems
possible

● Despite the variety of
language design proposal,
such languages are still
“domain-specific”

Q&A
An Overview of Continuous

Querying in (Modern) Data System
Riccardo Tommasini, INSA Lyon, CNRS Liris (France)

Angela Bonifati, Lyon 1 University, CNRS Liris, IUF (France)

106

