Agenda

Introduction on Stream Processing Models [done]

Declarative Language: Opportunities, and Design Principles

Comparison of Prominent Streaming SQL Dialects for Big Stream
Processing Systems

Conclusion

“The key idea of declarative programming is that a
program is a theory in some suitable logic, and the

computation is deduction from the theory”

—J.W. Lloyd

Advantages

* Decouple interpretation and execution (e.g. parallelism)

* Allows optimisation relying on the formal semantics

°* IDEALLY PORTABLE (well-defined semantics)

How to design a good language?

Minimality

a language should
provide only a small set
of needed language
constructs so that the
same meaning cannot be
expressed by different
language constructs;

Symmetry

a language should
ensure that the same
language construct
always expresses the
same semantics
regardless of the context

Orthogonality

a language should
guarantee that every
meaningful combination
its constructs is
applicable.

When do we need it?

* Writing the optimal solution is as hard as solving the
problem (e.g. JOIN optimisation)

* We want to enhance programmer productivity by adding
Domain-Specific abstraction (e.g. streams)

* We want to limit the expressiveness of the languages to
ensure some nice property (e.g. decidability)

SIWVSCTRAN KNGO
4 | Barents Sea
Arctic Ocean

denng Sea Groeenland Sea
AKX Sweden
Belarus
v Baffin Bay 4
& Iceland \ " Turke
N NoOfthwestiern G’mw Unn‘d
N_“.”h | Canada Passages Kinqdom‘o l‘.‘:ms
Paci fi C BC AR Irela ‘m'y
ocean Hudson Bay
X VB
»= 11 h 25 min :
m
from €1,437 P
- Portugal
San Francisco } e
ternational Airport - 18, o
. : “MEN NS
United States " * X
AL RS Lar NEOH pA WM -
NM £ L W Ok N Oor t h
- LWAR YA VA Atlantic Wes
~ ¥ ! .”N:. Ocean Sahs
A GARE: M3
Mexico Gulf of Fl
Mexico
Cuba
S Puerto Rico
Guatemala :
b \ - "km|. ”
> .~ ,/
) - - ,//

S~ ') " Venezuela - 4

Program/Query

Parser

SELECT name

FROM (

SEFECE 3

d,

name

FROM People) p

WHERE p. id

1

Parsing

* Obtaining the Declarative

Program/Query
* Verify it is is syntactically valid 2\
e
* Creating an AST S

Program/Query

Abstract Syntax
Tree

Parser —) |_Ogical Optimiser

- statement

- statement

type "statement"

+ @

1
1
1
1
!
! o
1
1
1
1
1

identifier

-

identifier

identifier

+ expression

+ expression

Logical Planning

Obtaining the AST of the
program/query

Verify all the preconditions
hold

Apply optimisations

Errors: statistics not updated,
wrong decision

Generates logical plan

O

&

90’0 Ostbahnhof

B o
Darmstadt °eqe®®

BESSUNGEN

ﬁ 15 min

Program/Query

Parser

Abstract Syntax
Tree

—) | Ogical Optimiser

]
0

o J e]

Physical Optimiser

=

Examp

le

Original Filter Combine
Plan Push-Down Projection
Project Project v,
name name S
N P Project Project
"¢’ idname S name

Project
id,name

Filter
id=1

Filter

Physical Planning

Obtaining the logical plan of
the program/query

Verify all the preconditions
Errors: table not exists

Generates physical plan

o

“»
- .‘.

. «e,0stbahnhof

1.2km - m

Program/Query

Abstract Syntax
Tree
Parser —) | Ogical Optimiser
Physical Plan

Execution Engine —— Physical Optimiser

e =

results

Original
Plan

Project
name

Filter \
d=1

Project
id.name v

People

Example

Filter Combine
Push-Down Projection
Project '\,
name \\
Project Project
id,name name

Filter
id=1

Physical
Plan

IndexLookup
id=1

return: name

Executing

* Obtain physical plan of the
query

®* Load it for execution

* Run!

Runtime Errors

* Input not compliant to the
expected one

* Table dropped while running
* Network fail (fixable)

* Node fail (fixable)

