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“The key idea of declarative programming is that a
program is a theory in some suitable logic, and the

computation is deduction from the theory”

—J.W. Lloyd



Advantages

* Decouple interpretation and execution (e.g. parallelism)

* Allows optimisation relying on the formal semantics

°* IDEALLY PORTABLE (well-defined semantics)



How to design a good language?



Minimality

a language should
provide only a small set
of needed language
constructs so that the
same meaning cannot be
expressed by different
language constructs;



Symmetry

a language should
ensure that the same
language construct
always expresses the
same semantics
regardless of the context



Orthogonality

a language should
guarantee that every
meaningful combination
its constructs is
applicable.



When do we need it?

* Writing the optimal solution is as hard as solving the
problem (e.g. JOIN optimisation)

* We want to enhance programmer productivity by adding
Domain-Specific abstraction (e.g. streams)

* We want to limit the expressiveness of the languages to
ensure some nice property (e.g. decidability)
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Program/Query

Parser

SELECT name

FROM (

SEFECE 3

d,

name

FROM People) p

WHERE p. id

1




Parsing

* Obtaining the Declarative

Program/Query
* Verify it is is syntactically valid 2\
e
* Creating an AST S
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Logical Planning

Obtaining the AST of the
program/query

Verify all the preconditions
hold

Apply optimisations

Errors: statistics not updated,
wrong decision

Generates logical plan
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Physical Planning

Obtaining the logical plan of
the program/query

Verify all the preconditions
Errors: table not exists

Generates physical plan
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Executing

* Obtain physical plan of the
query

®* Load it for execution

* Run!




Runtime Errors

* Input not compliant to the
expected one

* Table dropped while running
* Network fail (fixable)

* Node fail (fixable)




