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Agenda

Introduction on Stream Processing Models

Declarative Language: Opportunities, and Design Principles

Comparison of Prominent Streaming SQL Dialects for Big Stream
Processing Systems

Conclusion



Unbounded yet time-ordered sequence of data

Jennifer Widom



Stream Processing 101

* Data Stream Management Systems (DSMS)

* Found origin within databased community

* focus on continuous query answering and analytics

* Reference Models inspired by Relational Algebra: CQL, Secret
* Complex Event Processing (CEP)

* Found origin within software engineering community

* focus on continuous detection of patterns

* Reference Models inspired by regular languages: NFA, SNOOP



Time Management

* Processing Time (consumer) implies a total order on
the stream.

* Event Time (producer), implies a partial order on the
data.



DSMS (CQL)

Stream—to—Relation , .
Relation—to—Relation

Streams Relations

Relation—to—Stream



DSMS (CQL)

* Expressive Languages (SQL++)
* Windowing
* Canonical: logical/physical sliding/tumbling

* Custom: session, data-driven, event-driven



DSMS (CQL)

CREATE SCHEMA Stock(id string, price float, timestamp int)

SELECT avg(price)

FROM Stock#time(10 minutes)
OUTPUT EVERY 1 minutes
GROUP BY id



CEP

* Regular Languages (Declarative)
* Core from SNOOP (SEQ, AND, OR, NOT, FIRST, LAST)
* Allen’s Algebra

* Finite state machines (non-det)



CEP (SNOOP)

P, SEQP, | P
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CEP (SNOOP)

CREATE SCHEMA Selling(from string, to string, price float, ts int)
CREATE SCHEMA Buying(from string, to string, price float, ts int)
CREATE SCHEMA Fraud (sell string, by string)

INSERT INTO Fraud

SELECT a.id, b.id

FROM PATTERN

[EVERY a=Selling -> b=Buying(a.from=b.10, a.price >
price)J#time(10min)

OUTPUT EVERY 1 min



http://a.id
http://b.id
http://b.to

CEP (SNOOP)

CREATE SCHEMA AltitudeChange(starts long, ends long, ialt long, falt
long)

CREATE SCHEMA CruisePeriod(onts long, offts long)

SELECT ~
FROM CruisePeriod#lastevent AS a,
AltitudeChange#lastevent AS b where a.overlaps(b)



Big Stream Processing

Ecosystem




Big Stream Processing

Fully-Distributed Systems

* Fault-Tolerant:
® At-Least-Once Or Exactly-Once semantics
* Scalable (millions of tuples per minute)

* Flexible Programmatic API that guides
towards the creation of Direct Acyclic Graph



Big Stream Processing

Languages

* Offer languages that are embedded in a general-purpose
host language, typically Java

* Encourage developers to explicitly code a Direct-Acyclic
Graph

* Provide relational operators, but also expose low-level
details such as partitioning, timestamp extraction



Solution Landscape
(qualitative)
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Big Stream Processing

(Issues)

* Distributions makes out-of-order handling a primary

problem, and, thus solutions appears in the programmatic
APls.

* Languages are not self-contained, thus, are hard to
isolate clearly from the host language

* Debugging, benchmarking, and standardisation becomes
hard



Major systems started migrating towards a fully-
declarative approach ultimately evolved into SQL-

like streaming DSL.



Adoption of SQL-like
iInterface
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ABSTRACT

Real-time data analysis and management are increasingly
critical for today’s businesses. SQL is the de facto lingua
franca for these endeavors, yet support for robust streaming
analysis and management with SQL remains limited. Many
approaches restrict semantics to a reduced subset of features
and/or require a suite of non-standard constructs. Addition-
ally, use of event timestamps to provide native support for
analyzing events according to when they actually occurred
is not pervasive, and often comes with important limitations.

We present a three-part proposal for integrating robust
streaming into the SQL standard, namely: (1) time-varying
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