
Tutorial: An Outlook to
Declarative Languages
for Big Streaming Data
DEBS 2019, Darmstadt, Germany, Europe, Earth,

Solar System, Milky Way, Universe
Riccardo Tommasini, Sherif Sakr,

Marco Balduini, and Emanuele Della Valle

Who we are

Agenda

• Introduction on Stream Processing Models

• Declarative Language: Opportunities, and Design Principles

• Comparison of Prominent Streaming SQL Dialects for Big Stream
Processing Systems

• Conclusion

Jennifer Widom

Unbounded yet time-ordered sequence of data

Stream Processing 101
• Data Stream Management Systems (DSMS)

• Found origin within databased community

• focus on continuous query answering and analytics

• Reference Models inspired by Relational Algebra: CQL, Secret

• Complex Event Processing (CEP)

• Found origin within software engineering community

• focus on continuous detection of patterns

• Reference Models inspired by regular languages: NFA, SNOOP

Time Management

• Processing Time (consumer) implies a total order on
the stream.

• Event Time (producer), implies a partial order on the
data.

DSMS (CQL)

DSMS (CQL)

• Expressive Languages (SQL++)

• Windowing

• Canonical: logical/physical sliding/tumbling

• Custom: session, data-driven, event-driven

DSMS (CQL)

CREATE SCHEMA Stock(id string, price float, timestamp int)

SELECT avg(price)
FROM Stock#time(10 minutes)
OUTPUT EVERY 1 minutes
GROUP BY id

CEP

• Regular Languages (Declarative)

• Core from SNOOP (SEQ, AND, OR, NOT, FIRST, LAST)

• Allen’s Algebra

• Finite state machines (non-det)

CEP (SNOOP)

9 1
0

t3 610 2 4 5 7 8

P1 P1 P1
P2 P2

P3 P3P1 SEQ P3

P2 AND P3

P2 OR P3

P1 PAR P2

P3 STARTS P1

P1 EQUALS P3

NOT(P3).[P1 , P1]

P3 FINISHES P2

P2 MEETS P3

CEP (SNOOP)
CREATE SCHEMA Selling(from string, to string, price float, ts int)

CREATE SCHEMA Buying(from string, to string, price float, ts int)

CREATE SCHEMA Fraud (sell string, by string)

INSERT INTO Fraud
SELECT a.id, b.id
FROM PATTERN
[EVERY a=Selling -> b=Buying(a.from=b.to, a.price >
price)]#time(10min)
OUTPUT EVERY 1 min

http://a.id
http://b.id
http://b.to

CEP (SNOOP)

CREATE SCHEMA AltitudeChange(starts long, ends long, ialt long, falt
long)

CREATE SCHEMA CruisePeriod(onts long, offts long)

SELECT *
FROM CruisePeriod#lastevent AS a,
AltitudeChange#lastevent AS b where a.overlaps(b)

Big Stream Processing
Ecosystem

Big Stream Processing

• Fault-Tolerant:

• At-Least-Once or Exactly-Once semantics

• Scalable (millions of tuples per minute)

• Flexible Programmatic API that guides
towards the creation of Direct Acyclic Graph

Fully-Distributed Systems

Big Stream Processing

• Offer languages that are embedded in a general-purpose
host language, typically Java

• Encourage developers to explicitly code a Direct-Acyclic
Graph

• Provide relational operators, but also expose low-level
details such as partitioning, timestamp extraction

Languages

Solution Landscape
(qualitative)

Simplicity

Ex
pr

es
si
vi
ty

Esper

Flink
Spark

Kafka
Streams

Storm

ETALIS

T-Rex

Big Stream Processing Solutions Single Machine

DB

Big Stream Processing

• Distributions makes out-of-order handling a primary
problem, and, thus solutions appears in the programmatic
APIs.

• Languages are not self-contained, thus, are hard to
isolate clearly from the host language

• Debugging, benchmarking, and standardisation becomes
hard

(Issues)

Major systems started migrating towards a fully-

declarative approach ultimately evolved into SQL-

like streaming DSL.

Adoption of SQL-like
interface

time

Big Stream Processing Solutions

Flink
SQL

Spark
Structured
Streaming

Single Machine

KSQL

Storm

BEAM
SQL

EPL

