
Tutorial: An Outlook to 
Declarative Languages 
for Big Streaming Data
DEBS 2019, Darmstadt, Germany, Europe, Earth, 

Solar System, Milky Way, Universe
Riccardo Tommasini, Sherif Sakr, 

Marco Balduini, and Emanuele Della Valle



Who we are



Agenda

• Introduction on Stream Processing Models 

• Declarative Language: Opportunities, and Design Principles

• Comparison of Prominent Streaming SQL Dialects for Big Stream 
Processing Systems

• Conclusion
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Unbounded yet time-ordered sequence of data 



Stream Processing 101
• Data Stream Management Systems (DSMS)

• Found origin within databased community

• focus on continuous query answering and analytics

• Reference Models inspired by Relational Algebra: CQL, Secret

• Complex Event Processing (CEP) 

• Found origin within software engineering community

• focus on continuous detection of patterns

• Reference Models inspired by regular languages: NFA, SNOOP



Time Management

• Processing Time (consumer) implies a total order on
the stream.

• Event Time (producer), implies a partial order on the
data.



DSMS (CQL)



DSMS (CQL)

• Expressive Languages (SQL++)

• Windowing

• Canonical: logical/physical sliding/tumbling

• Custom: session, data-driven, event-driven



DSMS (CQL)

CREATE SCHEMA Stock(id string, price float, timestamp int)

SELECT avg(price)
FROM Stock#time(10 minutes) 
OUTPUT EVERY 1 minutes
GROUP BY id



CEP

• Regular Languages (Declarative)

• Core from SNOOP (SEQ, AND, OR, NOT, FIRST, LAST)

• Allen’s Algebra

• Finite state machines (non-det)



CEP (SNOOP)
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CEP (SNOOP)
CREATE SCHEMA Selling(from string, to string, price float, ts int)

CREATE SCHEMA Buying(from string, to string, price float, ts int)

CREATE SCHEMA Fraud (sell string, by string)

INSERT INTO Fraud
SELECT a.id, b.id
FROM PATTERN 
[EVERY a=Selling -> b=Buying(a.from=b.to, a.price > 
price)]#time(10min) 
OUTPUT EVERY 1 min

http://a.id
http://b.id
http://b.to


CEP (SNOOP)

CREATE SCHEMA AltitudeChange(starts long, ends long, ialt long, falt 
long)

CREATE SCHEMA CruisePeriod(onts long, offts long)

SELECT * 
FROM CruisePeriod#lastevent AS a, 
AltitudeChange#lastevent AS b where a.overlaps(b)



Big Stream Processing
Ecosystem



Big Stream Processing

• Fault-Tolerant: 

• At-Least-Once or Exactly-Once semantics

• Scalable (millions of tuples per minute)

• Flexible Programmatic API that guides 
towards the creation of Direct Acyclic Graph 

Fully-Distributed Systems



Big Stream Processing

• Offer languages that are embedded in a general-purpose 
host language, typically Java

• Encourage developers to explicitly code a Direct-Acyclic 
Graph 

• Provide relational operators,  but also expose low-level 
details such as partitioning, timestamp extraction

Languages
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Big Stream Processing

• Distributions makes out-of-order handling a primary
problem, and, thus solutions appears in the programmatic
APIs.

• Languages are not self-contained, thus, are hard to
isolate clearly from the host language

• Debugging, benchmarking, and standardisation becomes
hard

(Issues)



Major systems started migrating towards a fully-

declarative approach ultimately evolved into SQL-

like streaming DSL.
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