e
o
(S
-
» 3
o
,>¢
O
)

N.
——
—
/SIS *

\,%_\
5. 1
a8 =
C7 |

Tutorial: An Outlook to
Declarative Languages
for Big Streaming Data

DEBS 2019, Darmstadt, Germany, Europe, Earth,
Solar System, Milky Way, Universe

Riccardo Tommasini, Sherif Sakr,
Marco Balduini, and Emanuele Della Valle




R rppp e M AT I (\ L TO

‘ «uda aa

l
c«g

tEad uuaa.




Agenda

Introduction on Stream Processing Models

Declarative Language: Opportunities, and Design Principles

Comparison of Prominent Streaming SQL Dialects for Big Stream
Processing Systems

Conclusion



Unbounded yet time-ordered sequence of data

Jennifer Widom



Stream Processing 101

* Data Stream Management Systems (DSMS)

* Found origin within databased community

* focus on continuous query answering and analytics

* Reference Models inspired by Relational Algebra: CQL, Secret
* Complex Event Processing (CEP)

* Found origin within software engineering community

* focus on continuous detection of patterns

* Reference Models inspired by regular languages: NFA, SNOOP



Time Management

* Processing Time (consumer) implies a total order on
the stream.

* Event Time (producer), implies a partial order on the
data.



DSMS (CQL)

Stream—to—Relation , .
Relation—to—Relation

Streams Relations

Relation—to—Stream



DSMS (CQL)

* Expressive Languages (SQL++)
* Windowing
* Canonical: logical/physical sliding/tumbling

* Custom: session, data-driven, event-driven



DSMS (CQL)

CREATE SCHEMA Stock(id string, price float, timestamp int)

SELECT avg(price)

FROM Stock#time(10 minutes)
OUTPUT EVERY 1 minutes
GROUP BY id



CEP

* Regular Languages (Declarative)
* Core from SNOOP (SEQ, AND, OR, NOT, FIRST, LAST)
* Allen’s Algebra

* Finite state machines (non-det)



CEP (SNOOP)

P, SEQP, | P

P, AND P,

P, OR P,

P, PARP,

P, STARTS P,
P, EQUALS P,
NOT(P;).IP, , Py
P; FINISHES P,

P, MEETS P,



CEP (SNOOP)

CREATE SCHEMA Selling(from string, to string, price float, ts int)
CREATE SCHEMA Buying(from string, to string, price float, ts int)
CREATE SCHEMA Fraud (sell string, by string)

INSERT INTO Fraud

SELECT a.id, b.id

FROM PATTERN

[EVERY a=Selling -> b=Buying(a.from=b.10, a.price >
price)J#time(10min)

OUTPUT EVERY 1 min



http://a.id
http://b.id
http://b.to

CEP (SNOOP)

CREATE SCHEMA AltitudeChange(starts long, ends long, ialt long, falt
long)

CREATE SCHEMA CruisePeriod(onts long, offts long)

SELECT ~
FROM CruisePeriod#lastevent AS a,
AltitudeChange#lastevent AS b where a.overlaps(b)



Big Stream Processing

Ecosystem




Big Stream Processing

Fully-Distributed Systems

* Fault-Tolerant:
® At-Least-Once Or Exactly-Once semantics
* Scalable (millions of tuples per minute)

* Flexible Programmatic API that guides
towards the creation of Direct Acyclic Graph



Big Stream Processing

Languages

* Offer languages that are embedded in a general-purpose
host language, typically Java

* Encourage developers to explicitly code a Direct-Acyclic
Graph

* Provide relational operators, but also expose low-level
details such as partitioning, timestamp extraction



Solution Landscape
(qualitative)

4 ! DB
TALIS 1
._E'- :
% B Esper !
N |
0 | B T-Rex :
o !
L .Storm I
|
- .Spark
"B Fink
|
. Kafka
I Streams
I »
Simplicity

. Big Stream Processing Solutions .Single Machine



Big Stream Processing

(Issues)

* Distributions makes out-of-order handling a primary

problem, and, thus solutions appears in the programmatic
APls.

* Languages are not self-contained, thus, are hard to
isolate clearly from the host language

* Debugging, benchmarking, and standardisation becomes
hard



Major systems started migrating towards a fully-
declarative approach ultimately evolved into SQL-

like streaming DSL.



Adoption of SQL-like
iInterface

BEAM
SQL
Flink
B EPL B storm SQL
Spark
Structured . KSQL
Streaming

time

. Big Stream Processing Solutions .Single Machine



One SQL to Rule Them All:
An Efficient and Syntactically Idiomatic Approach to
Management of Streams and Tables

An Industrial Paper

Edmon Begoli Tyler Akidau Fabian Hueske
Oak Ridge National Laboratory / Google Inc. / Apache Beam Ververica / Apache Flink
Apache Calcite Seattle, WA, USA Berlin, Germany
Oak Ridge, Tennessee, USA takidau@apache.org fhueske@apache.org
begoli@apache.org
Julian Hyde Kathryn Knight Kenneth Knowles

Looker Inc. / Apache Calcite
San Francisco, California, USA
jhyde@apache.org

ABSTRACT

Real-time data analysis and management are increasingly
critical for today’s businesses. SQL is the de facto lingua
franca for these endeavors, yet support for robust streaming
analysis and management with SQL remains limited. Many
approaches restrict semantics to a reduced subset of features
and/or require a suite of non-standard constructs. Addition-
ally, use of event timestamps to provide native support for
analyzing events according to when they actually occurred
is not pervasive, and often comes with important limitations.

We present a three-part proposal for integrating robust
streaming into the SQL standard, namely: (1) time-varying

ralatinne ac a faiindatinn far rlaccircal tahlac ac wrell ac ctream-

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
knightke@ornl.gov

Google Inc. / Apache Beam
Seattle, WA, USA
kenn@apache.org

CCS CONCEPTS

« Information systems — Stream management; Query

languages;

KEYWORDS

stream processing, data management, query processing

ACM Reference Format:

Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn
Knight, and Kenneth Knowles. 2019. One SQL to Rule Them All:
An Efficient and Syntactically Idiomatic Approach to Management
of Streams and Tables: An Industrial Paper. In 2019 International

Mawibncnsinnn nm Mo nmnsmnnsmd Al T ada OCTAOALNT P10 Tasana 20 Tl ©



