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ABSTRACT
In the Big Data context, data streaming systems have been in-
troduced to tame velocity and enable reactive decision making.
However, approaching such systems is still too complex due to
the paradigm shift they require, i.e., moving from scalable batch
processing to continuous analysis and detection. Initially, modern
big stream processing systems (e.g., Flink, Spark, Storm) have
been lacking the support of declarative languages to express the
streaming-based data processing tasks and have been mainly re-
lying on providing low-level APIs for the end-users to implement
their tasks. However, recently, this fact has been changing and most
of them started to provide SQL-like languages for their end-users.

In general, declarative Languages are playing a crucial role in
fostering the adoption of Stream Processing. This tutorial focuses
on introducing various approaches for declarative querying of the
state-of-the-art big data streaming frameworks. In addition, we
provide guidelines and practical examples on developing and de-
ploying Stream Processing applications using a variety of SQL-like
languages, such as Flink-SQL, KSQL and Spark Streaming SQL.
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1 INTRODUCTION
In every second of every day, we are generating massive amounts
of data. Initially, Big data processing systems (e.g., MapReduce [8])
focused on scalable batch processing for static data. Recently, the
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challenges related to Big Data processing become were clarified. It
becomes clear the need of taming data processing along multiple
dimensions also known as the four Vs, i.e., Volume, Variety, Veracity,
and with the growing interest of having (near) real-time processing,
Velocity [12].

In general, stream and event processing techniques were around
for decades [11, 14]. Nevertheless, in the the Big Data context
Data Velocity cannot be entirely separated from the other dimen-
sions. Therefore, solutions like Storm, Flink, Spark Structured
Streaming, and Kafka Streams emerged among the others to tame
data Velocity. In practice, a lot of work was done on handling the
complexity of writing applications by designing systems’ APIs that
allow systems’ users to implement a large class of applications.
Users’ requirements comprise consuming data generated from mul-
tiple sources; pushing data asynchronously to servers responsible
to transform, manipulate, and enrich these data joining them with
other resources [9]. Most of big stream processing systems initially
provided functional APIs to write programs. Later on, SQL-inspired
languages started spreading, acknowledging the need need for
declarative languages [10, 15].

The goal of this tutorial is to provide an overview of the state-
of-the-art of the ongoing research and development efforts in the
domain of declarative languages for big streaming data. In particular,
the focus of the tutorial are on the following aspects:

• To provide an overview of the fundamental notions for pro-
cessing streams with declarative languages;

• To present an outlook and comparison of prominent Big
Streaming Data frameworks that offer declarative domain-
specific languages;

• To provide a critical discussion on challenges and opportu-
nities for declarative streaming query languages.

In the following sections, we will present examples comprising
three prominent Big Streaming Data frameworks that started to de-
velop their declarative SQL-like domain-specific languages to tame
data Velocity, i.e., Flink [5] with Flink SQL1, Spark Structed
Streaming [3] with Spark SQL2, and Kafka Streams3 with KSQL4.
In particular, we will present relevant examples for each of the
selected systems and languages, highlighting similarities and dif-
ferences alongside the following fundamental features for stream

1https://ci.apache.org/projects/flink/flink-docs-stable/dev/table/sql.html
2https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html
3https://kafka.apache.org/documentation/streams/
4https://www.confluent.io/product/ksql/
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processing languages: (i) Windowing and Aggregates (ii) Stream
Enrichment (Stream-Table Joins) (iii) Stream-to-Stream Joins

2 INTENDED ANALYSIS PRINCIPLES
In general, the main aim of declarative languages (DL) is to facilitate
the development of applications by achieving data independence [6].
In practice, DLs become particularly useful in those contexts where
the complexity of writing a program is as high as the problem the
program ismade to solve. In fact, DLs simplify common coding tasks
making code more readable and software maintainable. Moreover,
DLs decouple program design and optimization.

Figure 1 illustrates the general steps for processing declarative
queries. DLs typically distinguish the following levels of abstrac-
tions, i.e., the syntactic level, which correspond the to the set of
programs a user can write; the logical level, which corresponds to
the set of valid programs for which it is possible to provide a logical
plan of execution; and the operational level, which corresponds
to the set of programs that can be actually executed. These levels
map respectively to different states in the program life-cycle, i.e.,
parsing, planning, and evaluating.

In practice, declarative languages allow to treat usability, opti-
mization and, thus, efficiency in a separate manner. Nevertheless,
it is possible to catch up with behavioral inconsistencies across sys-
tems implementing the same language when they are not backed-up
with a solid theoretical background [7]. Language design princi-
ples like Codd’s ones also have played a critical role on making
languages portable. In particular, the main design principles of
declarative languages include: Minimality, i.e., a language should
provide only a small set of needed language constructs so that
the same meaning cannot be expressed by different language con-
structs; Symmetry, i.e., a language should ensure that the same
language construct always expresses the same semantics regard-
less of the context it is used in; and Orthogonality, i.e., a language
should guarantee that every meaningful combination its constructs
is applicable.

So far, in the context of Big Data Streams, declarative languages
suffer from the absence of a shared formal framework that clarify
execution models and time-management approaches. Therefore,
existing systems have developed their declarative languages with
a main focus on meeting specific industrial and application needs.
In particular, they try to be as syntactically-close as possible to
SQL consequently neglecting Codd’s criteria for language design.
Nevertheless, SQL was not intended to be used with unbounded
streams of data nor with the continuous semantics required to pro-
cess them. Formal models to extend traditional relational algebra
into a backwards-compatible streaming algebra exist, e.g., CQL [1],
but they were only partially considered [13]. In fact, existing sys-
tems privilege APIs that only resemble the SQL syntax but often
lack a clear separation of concerns like Arasu et al.’s [2].

3 STREAMING LANGUAGES: EXAMPLES
In this section, we provide details about the declarative domain-
specific languages provided by prominent Big Data framework for
writing programs that consume and produce streams. Our selection

include Apache Kafka’s KSQL5, Flink’s SQL [5], and Spark Struc-
tured Streaming [3]. These frameworks have different goals and
design principles, but they all offer declarative solution to process
streaming data.
KSQL is a recent effort by the Kafka Stream community that aims
at reducing the offer of writing Stream Processing applications3,4.
Flink SQL1,4 makes use of Apache Calcite [4] for parsing and
planning. Flink SQL offers a unified solution for static and stream
processing that, following Calcite intent, tries to be as close as
possible to SQL standard syntax.
Spark Structured Streaming 2,4is a library for Apache Spark that
enables stream processing on top of Spark’s DataFrame APIs.

In the following, we present canonical examples of queries, writ-
ten using the DSLs of the aforementioned systems. We kept the
examples as simple as possible, in order to focus on specific features
of the languages.

3.1 Time Window Operators & Aggregates

1 SELECT nat ion , count ( ∗ ) FROM pageviews GROUP BY na t i on

Listing 1: Generic Aggregation implicitly referring to a
landmark window opened when the query was started.

Aggregations over time windows is one of the most demanded
use case in stream processing. Let’s consider, for instance, a Web
Analytics scenario whereWeb servers stream each visited page (e.g.,
DEBS2019 homepage) together with information about the visitors
such as the nation of their IP addresses (e.g., Italy and Estonia). In
this context, it is useful to count the number of users per nation: 1)
since the opening of the website (i.e., using a landmark window), 2)
in the last hour (i.e., using a tumbling window), 3) in the last hour
updating the result every minute (i.e., using a hopping window)
or for every new visit (i.e., using a sliding window), or 4) within a
session window defined as the time span in which visits are dense
(e.g., two consecutive visits are separated by less then a minute).

All the considered languages allow (implicitly) landmark win-
dows and continuously update the aggregate. All basic SQL aggre-
gates are supported.

Hopping windows (as well as the special case of the tumbling
window in which the overlap between consecutive windows is zero)
are available in all languages.

1 CREATE TABLE a n a l y s i s AS SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 WINDOW HOPPING ( SIZE 1 HOUR, ADVANCE BY 1 MINUTE )
4 GROUP BY na t i on ;

Listing 2: KSQL Hopping Window. Note the presence of the
DDL statement CREATE TABLE ... AS as well as the window
clause in the FROM.

1 SELECT nat ion , COUNT( ∗ )
2 FROM pageviews
3 GROUP BY HOP( rowtime , INTERVAL 1H, INTERVAL 1M) , n a t i on

Listing 3: Flink SQL Hopping Window. Note the window
specified as a GROUP BY criteria.

5https://www.confluent.io/product/ksql/
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Figure 1: General Processing Steps of Declarative Queries

1 v a l d f = pagev iews . groupBy (
2 window ( $ " t imestamp " , " 1 hour " , " 1 minute " ) , $ " n a t i on "
3 ) . count ( )

Listing 4: Spark Hopping Windowing. Note the window
specified as a GROUP BY criteria.

Notably, the window clause is specified in the FROM in KSQL
while it is a group by criteria in Flink and Spark. KSQL follows the
CQL style, while Flink and Spark adhere to SQL.

Tumblingwindows are specifiedwith the clause WINDOW TUMBLING
in KSQL and TUMBLE(. . . ) in Flink, while Spark simply uses the
same method window(. . . ) without specifing the hopping interval.

Sliding windows (i.e., those that update the result as soon as a
new data arrive) as well as session windows are available in KSQL
and FLink but not in Spark. This is due to the nature of discretized
streams in Spark and its micro batching processing model. The next
two listing present the case of session windows in KSQL and Flink.
The case of sliding window is not illustrated.

1 CREATE TABLE a n a l y s i s AS
2 SELECT nat ion , count ( ∗ ) ,
3 TIMESTAMPTOSTRING ( windowstar t ( ) , ' yyyy−MM−dd HH:mm: s s ' )

AS window_s ta r t _ t s ,
4 TIMESTAMPTOSTRING ( windowend ( ) , ' yyyy−MM−dd HH:mm: s s ' )

AS window_end_ts
5 FROM pageviews WINDOW SESSION ( 1 MINUTE )
6 GROUP BY na t i on ;

Listing 5: KSQL Session Windows.

1 SELECT nat ion , count ( ∗ ) , SESSION_START ( . . . ) , SESSION
_ROWTIME ( . . . )

2 FROM pageviews
3 GROUP BY SESSION ( rowtime , INTERVAL 1M) , n a t i on

Listing 6: Flink SQL Session Window.

Note that both languages project the opening and closing time
of the window since they are not known a-priori as for all the other
windows illustrated in this session; they depend on the data. In
the example, a window clause as soon as the temporal distance
between two consecutive visits is longer than a minute.

3.2 Stream-Table Joins
In Industry 4.0, it is common to instrument production lines with
IoT sensors whose readings refer to the items passing the station at
the time the reading is taken. While this independent deployment

Landmark Tumble Hop Session Aggregates
KSQL implicit ✓ ✓ ✓ Standard SQL
Flink SQL implicit ✓ ✓ ✓ Standard SQL
SSS implicit ✓ X X Standard SQL

Table 1: Time-Based Window Operators and aggregates
across different systems.

Inner Left Outer Right Outer Full Outer
KSQL S S NS NS
Flink SQL S S* S* S*
SSS S, Stateless S, Stateless NS NS

Table 2: Stream-Static Joins. [S]upported, [N]ot[S]upported.
S*, Flink memory usage might grow indefinitely, Temporal
Tables can be used to avoid it.

minimizes the initial costs, it poses the challenge to join sensor
reading and items at analysis time.

Let’s, for instance, assume that the sensor readings flow on a
stream named SENSOR_READINGS and that their schema is LINE_ID,
SENSOR_ID, and READING_VALUE. The items in production are
recorded in a table named ITEMS_IN_PRODUCTION whose schema
is ITEM_ID, LINE_ID, and many other attributes that we can ignore.
Notably, in this simplified example we assume that there is only one
product in production per line, but some line may have no products.
We want to preserve also readings that do not match a product.
Therefore we need to perform a LEFT JOIN. The following listings
presents the queries for this example for the three languages.

1 CREATE STREAM SENSOR_ENRICHED AS
2 SELECT S . SENSOR_ID , S . READING_VALUE , I . ITEM_ID
3 FROM SENSOR_READINGS S LEFT JOIN ITEMS_IN_PRODUCTION I
4 ON S . LINE_ID= I . LINE_ID ;

Listing 7: LEFT JOIN of a stream with a table in KSQL.

1 SELECT S . SENSOR_ID , S . READING_VALUE , I . ITEM_ID
2 FROM SENSOR_READINGS S LEFT JOIN ITEMS_IN_PRODUCTION I
3 ON S . LINE_ID= I . LINE_ID ;

Listing 8: LEFT JOIN of a stream with a table in Flink.

1 v a l i t em s I nP r odu c t i o n = spark . r ead . . . .
2 v a l s en so rRead ing s = spark . r eadS t ream . . . .
3 v a l en r i c h edS en so rRe ad i ng s = s en so rRead ing s . j o i n (

i t ems InP roduc t i on , " LINE_ID " , " l e f t − j o i n " )

Listing 9: LEFT JOIN of a stream with a table in Spark.

Notably, all languages chose a SQL like syntax, where they hide
the different processing semantics. Indeed, each time a reading
appears in the stream this is instantaneously joined with the table.
Therefore, there is an implicit count-based window of one element
opened on the stream.

While the choice may appear to simplify the life of the user for
basic use case (such as this one), the user may be surprised to know
that not all the join forms are supported or that in spark some
output modes are not compatible with this join between streams
and tables. Such limitation would be clear if the windowwould have
been explicit. For instance, it is clear that a RIGHT join between a
stream and a table is meaningless because any data may possibly
appear on a stream, but we cannot wait until it appears to emit the
result. No operations that can block indefinitely the processing are
admitted in the streaming computational model.
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3.3 Stream-to-Stream Join
The last use case that we want to highlight in this tutorial is the
stream-to-stream join. Consider for example a case ofWebAnalytics
where we need to correlate advertisements’ impressions and clicks
over time. Let’s imagine that we can listen to an impression stream
that tells when an advertisement is displayed and to a click stream
that tells when an advertisement is clicked. Indeed a user can stay
for a long time on a page, so an advertisement displayed now can
be clicked after an hour. As in the case of stream-to-table join, all
three languages decided to hide the window that CQL would have
made explicit, but they cannot do so completely since they need to
specify a period of time after which elements can be evicted from
the stream. KSQL does it using the clause WITHIN in the FROM.
Flink and Spark simply assume that the timestamps of the elements
in the stream are accessible and they can be used in specifying the
logic of the join. Spark also relies on the notion of a Watermark to
determine the maximum delay allowed for late arrivals.

1 CREATE STREAM IMPRESSION_CLICKS_JOIN AS \
2 SELECT ∗ FROM IMPRESSIONS JOIN CLICKS
3 WITHIN 60 SECONDS ON ( IMPRESSION_TIME=CLICK_TIME ) ;

Listing 10: KSQL Stream-Stream Join

KSQL can perform any kind of join (even full-outer ones) for
windows stream-to-stream joins. Differently from the stream-to-
table join this is possible because there is a maximum time to wait
before becoming sure of the presence of a given element.

1 SELECT ∗ FROM IMPRESSIONS , CLICKS
2 WHERE IMPRESSION_ID = CLICK_ID AND
3 CLICK_TIME BETWEEN IMPRESSION_TIME − INTERVAL ' 1 ' HOUR

AND IMPRESSION_TIME

Listing 11: Flink SQL Stream-Stream time-windowed Join

Flink natively treats streams as infinite tables. Therefore, afore-
mentioned stream-table joins are possible for stream-to-stream too.
However, this implies infinitely growing resource usage as the state
must grows as the stream progresses. Temporal Table (TT) are
intended to solve. A TT is a parameterized view that represents
the changelog of an append-only table. A Temporal table function
provides access to the state of a TT at a specific point in time.

1 v a l imp r e s s i on s = spark . r eadS t ream . . . .
2 v a l c l i c k s = spark . r eadS t ream . . . .
3 / / Apply watermarks on event−t ime columns
4 v a l imprWithWtmrk = imp r e s s i on s . withWatermark ( "

impress ionTime " , " 2 hours " )
5 v a l c l i cksWithWatermark = c l i c k s . withWatermark ( " c l i c kT ime

" , " 3 hours " )
6 imprWithWtmrk . j o i n (
7 c l i cksWithWatermark ,
8 expr ( " " " c l i c kAd I d = impre s s i onAd Id AND
9 c l i c kT ime >= impress ionTime AND
10 c l i c kT ime <= impress ionTime + i n t e r v a l 1 hour
11 " " " ) )

Listing 12: Spark Stream-Stream Inner-Joins

Spark addresses such an unbounded state problem by defining
additional join conditions such that indefinitely old inputs cannot
match with future inputs and therefore can be cleared from the
state. It does so by defining: 1) watermark delays on both input
streams such that the engine knows how delayed the input can be;
and, 2) a constraint on event-time across the two input streams

Inner Left Outer Right Outer Full Outer
KSQL S, win S, win S, win S, win
Flink SQL S S* S* S*
SSS S S + w on left S + w on right NS

Table 3: Stream-Stream Joins. [S]upported,
[N]ot[S]upported, [W]atermark, [Win]dow. S*, Flink
memory usage might grow indefinitely.

such that the engine can figure out when old rows of one input is
not going to be required (i.e. will not satisfy the time constraint)
for matches with the other input.

4 CONCLUSION
This paper provides an overview of modern declarative stream pro-
cessing languages. As all of these languages have been just recently
introduced, it is most likely that more features and capabilities for
these languages will continue to be introduced and (re)-defined.
That said, this paper aims of spreading the knowledge of the state-
of-the-art of the available choices and the current capabilities of
these languages. Of course, from the perspective of researchers,
several research challenges are still open. For instance, defining a
standard syntax and semantics for a portable SQL-based stream-
ing language over the different Big Data Streaming framework is
expected to gain a lot of momentum soon.
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